Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 30(2): 420-435, 2024 01 17.
Article in English | MEDLINE | ID: mdl-37611074

ABSTRACT

PURPOSE: Brain metastases are associated with high morbidity and are often resistant to immune checkpoint inhibitors. We evaluated whether CDK4/6 inhibitor (CDKi) abemaciclib can sensitize intracranial tumors to programmed cell death protein 1 (PD-1) inhibition in mouse models of melanoma and breast cancer brain metastasis. EXPERIMENTAL DESIGN: Treatment response was evaluated in vivo using immunocompetent mouse models of brain metastasis bearing concurrent intracranial and extracranial tumors. Treatment effect on intracranial and extracranial tumor-immune microenvironments (TIME) was evaluated using immunofluorescence, multiplex immunoassays, high-parameter flow cytometry, and T-cell receptor profiling. Mice with humanized immune systems were evaluated using flow cytometry to study the effect of CDKi on human T-cell development. RESULTS: We found that combining abemaciclib with PD-1 inhibition reduced tumor burden and improved overall survival in mice. The TIME, which differed on the basis of anatomic location of tumors, was altered with CDKi and PD-1 inhibition in an organ-specific manner. Combination abemaciclib and anti-PD-1 treatment increased recruitment and expansion of CD8+ effector T-cell subsets, depleted CD4+ regulatory T (Treg) cells, and reduced levels of immunosuppressive cytokines in intracranial tumors. In immunodeficient mice engrafted with human immune systems, abemaciclib treatment supported development and maintenance of CD8+ T cells and depleted Treg cells. CONCLUSIONS: Our results highlight the distinct properties of intracranial and extracranial tumors and support clinical investigation of combination CDK4/6 and PD-1 inhibition in patients with brain metastases. See related commentary by Margolin, p. 257.


Subject(s)
Brain Neoplasms , Programmed Cell Death 1 Receptor , Humans , Mice , Animals , Brain Neoplasms/pathology , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , CD8-Positive T-Lymphocytes , Tumor Microenvironment , Cyclin-Dependent Kinase 4/metabolism
2.
Cancer Lett ; 299(2): 95-110, 2010 Dec 28.
Article in English | MEDLINE | ID: mdl-20826047

ABSTRACT

High level galectin-1 expression results in cancer cell evasion of the immune response, increased tumour survival and aggressive metastases. Using a galectin-1 polyclonal antibody, high levels of galectin-1 protein were shown to be expressed by breast cancer cells established from FVB/N MMTV-c-neu mice as well as by the B16F10 melanoma cell line. In mixed lymphocyte cultures using tumour cells as antigenic stimulators, addition of recombinant galectin-1 dose-dependently inhibited lymphocyte production. Disaccharides were identified that inhibited galectin-1 function and increased growth and activation of CD8(+) CTL's killing cancer cells. X-ray crystallographic structures of human galectin-1 in complex with inhibitory disaccharides revealed their mode of binding. Combining galectin-blocking carbohydrates as adjuvants with vaccine immunotherapy in vivo to promote immune responses significantly decreased tumour progression and improved the outcomes for tumour challenged mice. This is the first report showing that suitably selected galectin-1 blocking disaccharides will act as adjuvants promoting vaccine stimulated immune responses against tumours in vivo.


Subject(s)
Disaccharides/pharmacology , Galectins/metabolism , Immunity/drug effects , Mammary Neoplasms, Experimental/immunology , Animals , Blotting, Western , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Cytotoxicity, Immunologic/drug effects , Disaccharides/chemistry , Disaccharides/metabolism , Female , Galectin 1/chemistry , Galectin 1/genetics , Galectin 1/metabolism , Galectin 3/chemistry , Galectin 3/genetics , Galectin 3/metabolism , Galectins/chemistry , Galectins/genetics , Humans , Immunotherapy/methods , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/therapy , Mice , Mice, Inbred Strains , Models, Molecular , Protein Binding , Thiogalactosides/chemistry , Thiogalactosides/metabolism , Thiogalactosides/pharmacology , Tumor Burden/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...